Skip to content →

Magana, A. J., Brophy, S. P., & Bodner, G. M. (2012). Student views of engineering professors’ technological pedagogical content knowledge for integrating computational simulation tools in nanoscale science and engineering. International Journal of Engineering Education, 28(5), 1033-1045. https://www.ijee.ie/latestissues/Vol28-5/06_ijee2636ns.pdf

Abstract:

“The ability to explore the physical world at the nanoscale has opened up an affluence of technological advances with the potential to improve human life. Further, it has been complemented with significant advances in simulation-based engineering and science (SBE&S). Having become a crucial part of the present infrastructure, SBE&S is central to the application of advances in the conductance of scientific research and engineering practices. These facts clearly signify the need to integrate the use of computational simulation’ tools in 21st century engineering education curricula as one way to bridge the gap between school engineering and work engineering. The guiding research questions for this study are: (a) What technological pedagogical content knowledge do professors have for incorporating computational simulation tools to convey nanoscale science and engineering-related concepts and practices? and (b) How do students react to an instructor’s technological pedagogical content knowledge with computational simulation tools? This study coupled the methodological framework of a case study with the theoretical framework of TPCK. Open-ended interviews, classroom observations, and document analyses were conducted with six engineering professors teaching undergraduate and graduate courses related to nanoscale science and engineering. Thirty-three students of these courses were also interviewed. Analyses present detailed descriptions of how instructors integrated computational simulation tools to support the learning of nanoscale-related concepts. Findings revealed that computational simulations were perceived by students as effective learning tools. Also revealed was that students continued to confront difficulties when interacting with these tools. Implications for education and educational research in engineering relate to the development, the research and implementation scaffolds, and the transparency at the physical/conceptual, mathematical, and computational levels to understand and then overcome student difficulties in learning with computational simulation tools.”

Published in Journal article